Anwendung zeitdiskreter rekurrenter Fuzzy-Systeme zur Fehlerdiagnose (Fault Diagnosis employing Recurrent Fuzzy Systems)

نویسندگان

  • Andreas Schwung
  • Andreas Ortseifen
  • Jürgen Adamy
چکیده

Zusammenfassung Dieser Beitrag beschreibt die Anwendung zeitdiskreter rekurrenter Fuzzy-Systeme (DRFS) zur Fehlerdetektion und Fehlerisolation. Zum einen wird gezeigt, wie auf Basis datengestützt entworfener DRFS geeignete Residuen gebildet werden können. Zum anderen wird ein Ansatz zur Mehrfehlerisolation mit DRFS präsentiert. Dieser Ansatz basiert auf der Erweiterung klassischer statischer Fuzzy-Systeme zu DRFS. Die Anwendungsmöglichkeiten des Ansatzes werden anhand des Dreitank-Benchmarksystems illustriert. Summary This paper presents the application of discrete-time recurrent fuzzy systems (DRFS) for fault detection and isolation. On the one hand it is shown, how DRFS can be used for residual generation. On the other hand, an approach for isolation of multiple faults using DRFS is presented. This approach is based on an extension of static fuzzy systems for fault isolation to DRFS. The applicability of the approach is illustrated by a three tank benchmark system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modellierung dynamischer Systeme mit zeitkontinuierlichen rekurrenten Fuzzy-Systemen (Modeling of Dynamical Systems Using Continuous-time Recurrent Fuzzy Systems)

In diesem Beitrag wird die Anwendung zeitkontinuierlicher rekurrenter Fuzzy-Systeme (KRFS) zur Modellbildung technischer Systeme beschrieben. Ausgehend von der Systembeschreibung rekurrenter Fuzzy-Systeme werden Verfahren vorgestellt, mit denen das KRFS das Verhalten des Prozesses anhand von Messdaten und qualitativem Prozesswissen erlernen kann. Die Leistungsfähigkeit wird anhand der Modellier...

متن کامل

Fault Diagnosis Using Neuro-fuzzy Systems with Local Recurrent Structure

This paper investigates the development of the Adaptive Neuro-Fuzzy Systems with Local Recurrent Structure (ANFS-LRS) and their application to Fault Detection and Isolation (FDI). Hybrid learning, based on a fuzzy clustering algorithm and a gradientlike method, is used to train the ANFS-LRS. The experimental case study refers to an application of fault diagnosis of an electro-pneumatic actuator...

متن کامل

A TSK-Type Recurrent Neuro-Fuzzy Systems for Fault Prognosis

As a result from the demanding of process safety, reliability and environmental constraints, a called of fault detection and diagnosis system become more and more important. In this article some basic aspects of TSK (Takigi Sugeno Kang) neuro-fuzzy techniques for the prognosis and diagnosis of manufacturing systems are presented. In particular, a neuro-fuzzy model that can be used for the ident...

متن کامل

FUZZY BASED FAULT DETECTION AND CONTROL FOR 6/4 SWITCHED RELUCTANCE MOTOR

Prompt detection and diagnosis of faults in industrial systems areessential to minimize the production losses, increase the safety of the operatorand the equipment. Several techniques are available in the literature to achievethese objectives. This paper presents fuzzy based control and fault detection for a6/4 switched reluctance motor. The fuzzy logic control performs like a classicalproporti...

متن کامل

Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines

In this paper, ‎the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented‎. ‎A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis‎. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Automatisierungstechnik

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2010